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Estimating Population and Health Quantities

Goal: Estimate current and past demographic and health quantities
and their uncertainty, e.g.

Vital rates (fertility, mortality, migration): summary and age-specific
Population by age and sex
HIV prevalence

Data:

High quality vital registration and health surveillance data for less
than half of countries
In majority of countries, surveys and censuses only

Multiple data sources, each with their own issues
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Issues

Systematic biases:

Non-representative sampling
Poor geographic coverage
Recall bias
Undercount (censuses)

Sampling variation: between individuals, between strata.

Why is uncertainty assessment needed?

general assessment of accuracy: now routine (e.g. UNAIDS, opinion
polls, DHS, PMA2020, ACS)
assessing changes and differences between outcomes and
expectations
making decisions that avoid risks (e.g. national finance ministries for
pension planning, school closures)
Statistics NZ a leader: positive experience (Dunstan, Bryant)
Raftery (2014, arXiv): experiences and types of user
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Bayesian Statistical Modeling

Inference about a quantity of interest, Q, summarized by its
posterior distribution given all data and evidence:

p(Q|Data) ∝ p(Data|Q)× p(Q), i.e.

Posterior ∝ Likelihood × Prior

Unknown parameters (e.g. bias and measurement error variance of
surveys), can be included and estimated.
Advantages:

Information from other countries and expert knowledge can be
included through the prior
Multiple data sources can be included: If there are m data sources
(e.g. different surveys) (Data1, . . . ,Datam), the likelihoods are
multiplied:

p(Data|Q) = p(Data1|Q)× . . .× p(Datam|Q).

Estimates can be made for multiple countries at once, using
multinational patterns, by a Bayesian hierarchical model.

Now basis for UN population projections

Automatically gives uncertainty
Complex models can be estimated by Monte Carlo methods
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Estimating HIV Prevalance in Generalized Epidemics

Data:

HIV prevalence at ante-natal clinics:

Frequent measurements =⇒ Good for trends
Unrepresentative
Poor geographic coverage

National household surveys (e.g. DHS):

(more) Representative
Infrequent (e.g. 0-2 DHS’s in a country).

Bayesian model includes:

Standard SIR epidemic model
Bias in ANC data
Measurement error in ANC and DHS data

Evaluated by UNAIDS Reference Group

Now used for UNAIDS estimation and projection (EPP/Spectrum
software)
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Bias in ANC data
Measurement error in ANC and DHS data

Evaluated by UNAIDS Reference Group

Now used for UNAIDS estimation and projection (EPP/Spectrum
software)
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Bayesian Population Reconstruction
Wheldon et al., (2010, 2013, 2015)

Bayesian hierarchical model for all population quantities and data

Inputs:

Bias-corrected initial estimates of age-specific vital rates, net
migration and population counts.
Expert knowledge about measurement error variances.

Outputs: Joint posterior distribution of all population quantities of
interest.

Improvements:

Uncertainty is assessed
All population quantitites are estimated simultaneously: trends and
uncertainty are estimated in a demographically consistent way.
Software: popReconstruct R package
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Laos and New Zealand
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Laos and New Zealand Data

We reconstruct female populations for

Laos, 1985–2005 (increased from 1.8 million to 3.0 million)
New Zealand, 1961–2006 (increased from 1.2 million to 2.1 million)

Very different data qualities and demographies.

UN EGM on Strengthening the Demographic Evidence Base For The Post-2015 Development Agenda, New York, 5-6 October 2015

Session 7. A. Raftery (U. of Washington) – Measuring & communicating uncertainty for estimates 64



Laos and New Zealand Data

We reconstruct female populations for

Laos, 1985–2005 (increased from 1.8 million to 3.0 million)
New Zealand, 1961–2006 (increased from 1.2 million to 2.1 million)

Very different data qualities and demographies.

UN EGM on Strengthening the Demographic Evidence Base For The Post-2015 Development Agenda, New York, 5-6 October 2015

Session 7. A. Raftery (U. of Washington) – Measuring & communicating uncertainty for estimates 65



Laos and New Zealand Data

We reconstruct female populations for

Laos, 1985–2005 (increased from 1.8 million to 3.0 million)

New Zealand, 1961–2006 (increased from 1.2 million to 2.1 million)

Very different data qualities and demographies.

UN EGM on Strengthening the Demographic Evidence Base For The Post-2015 Development Agenda, New York, 5-6 October 2015

Session 7. A. Raftery (U. of Washington) – Measuring & communicating uncertainty for estimates 66



Laos and New Zealand Data

We reconstruct female populations for

Laos, 1985–2005 (increased from 1.8 million to 3.0 million)
New Zealand, 1961–2006 (increased from 1.2 million to 2.1 million)

Very different data qualities and demographies.

UN EGM on Strengthening the Demographic Evidence Base For The Post-2015 Development Agenda, New York, 5-6 October 2015

Session 7. A. Raftery (U. of Washington) – Measuring & communicating uncertainty for estimates 67



Laos and New Zealand Data

We reconstruct female populations for

Laos, 1985–2005 (increased from 1.8 million to 3.0 million)
New Zealand, 1961–2006 (increased from 1.2 million to 2.1 million)

Very different data qualities and demographies.

UN EGM on Strengthening the Demographic Evidence Base For The Post-2015 Development Agenda, New York, 5-6 October 2015

Session 7. A. Raftery (U. of Washington) – Measuring & communicating uncertainty for estimates 68



Total Fertility Rate

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●
● ●

● ●

●

●

●

●

●
● ●

● ●

Laos NZ

2

4

6

8

1985 1990 1995 2000 1960 1970 1980 1990 2000
year

T
F

R
 (

ch
ild

re
n)

legend
●

●

●

prior
posterior
WPP 2010

Average 95% Posterior Interval Half-widths

Laos 0.30
NZ 0.03

UN EGM on Strengthening the Demographic Evidence Base For The Post-2015 Development Agenda, New York, 5-6 October 2015

Session 7. A. Raftery (U. of Washington) – Measuring & communicating uncertainty for estimates 69



Total Fertility Rate

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●
● ●

● ●

●

●

●

●

●
● ●

● ●

Laos NZ

2

4

6

8

1985 1990 1995 2000 1960 1970 1980 1990 2000
year

T
F

R
 (

ch
ild

re
n)

legend
●

●

●

prior
posterior
WPP 2010

Average 95% Posterior Interval Half-widths

Laos 0.30
NZ 0.03

UN EGM on Strengthening the Demographic Evidence Base For The Post-2015 Development Agenda, New York, 5-6 October 2015

Session 7. A. Raftery (U. of Washington) – Measuring & communicating uncertainty for estimates 70



Total Fertility Rate

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●
● ●

● ●

●

●

●

●

●
● ●

● ●

Laos NZ

2

4

6

8

1985 1990 1995 2000 1960 1970 1980 1990 2000
year

T
F

R
 (

ch
ild

re
n)

legend
●

●

●

prior
posterior
WPP 2010

Average 95% Posterior Interval Half-widths

Laos 0.30
NZ 0.03

UN EGM on Strengthening the Demographic Evidence Base For The Post-2015 Development Agenda, New York, 5-6 October 2015

Session 7. A. Raftery (U. of Washington) – Measuring & communicating uncertainty for estimates 71



Life Expectancy at Birth

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

Laos NZ

50

55

60

65

70

75

80

1985 1990 1995 20001960 1970 1980 1990 2000
year

LE
B

 (
ye

ar
s)

legend
●

●

prior
posterior

Average 95% Posterior Interval Half-widths

Laos 0.80
NZ 0.04

UN EGM on Strengthening the Demographic Evidence Base For The Post-2015 Development Agenda, New York, 5-6 October 2015

Session 7. A. Raftery (U. of Washington) – Measuring & communicating uncertainty for estimates 72



Life Expectancy at Birth

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

Laos NZ

50

55

60

65

70

75

80

1985 1990 1995 20001960 1970 1980 1990 2000
year

LE
B

 (
ye

ar
s)

legend
●

●

prior
posterior

Average 95% Posterior Interval Half-widths

Laos 0.80
NZ 0.04

UN EGM on Strengthening the Demographic Evidence Base For The Post-2015 Development Agenda, New York, 5-6 October 2015

Session 7. A. Raftery (U. of Washington) – Measuring & communicating uncertainty for estimates 73



Life Expectancy at Birth

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

Laos NZ

50

55

60

65

70

75

80

1985 1990 1995 20001960 1970 1980 1990 2000
year

LE
B

 (
ye

ar
s)

legend
●

●

prior
posterior

Average 95% Posterior Interval Half-widths

Laos 0.80
NZ 0.04

UN EGM on Strengthening the Demographic Evidence Base For The Post-2015 Development Agenda, New York, 5-6 October 2015

Session 7. A. Raftery (U. of Washington) – Measuring & communicating uncertainty for estimates 74
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Summary

Estimates for demography and health in the majority of countries are
based on surveys and censuses from multiple sources with biases and
measurement error

Bayesian approaches can model and take account of all these issues

Some success in:

Estimating and projecting HIV prevalence in generalized epidemics
Reconstructing past and current population from limited data

Require systematic consistent data for as long in the past as possible

Papers available at
http://www.stat.washington.edu/raftery/Research/soc.html

Software: popReconstruct R package
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